A note on spontaneous symmetry breaking in quantum field
theory

University of the Ryukyus
May 12, 2023

Preparation for SSB

Noether’s theorem

Since the Lagrangian is invariant under the infinitismall action
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and using the equation of motion

then we have

defining the current j* as
JH =

0pa

then it always preserves
O J" =0

0.1 Infinitismall action

Denote var_;bhi to be a vector and consider the transformation
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~ (140974

= SB—’_ GA (TA)ab Szb
we can consider ¢ as

595(" = QA (TA)ab QZb
using this, the current can be shown as
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This T4 are the generators of Lie algebra. When 0T g orthogonal matrix, then the T4 are
AmA
antisymmetric matrices, and when e’ 7" is unitary matrix, then the T4 are Hermite matrices. I
am going to take an instance
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and denote @ = (¢1, p2, p3), then this Lagrangian is invariant under the action of O(3), and the
generator of o(3) is
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Note that you can take the generator as you want, but they are one of the way to take.
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now taking 6 = 1, and
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Thus
JH =i[0" 01 (=2 + @3) + "2 (01 — w3) + 0 @3 (—@1 + ¥3)]
especially

JO =i[p1 (—p2 + @3) + P2 (01 — 93) + 3 (—p1 + 93)]

1 SSB of complex scalar field
we recall the complex scaler field
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letting m — iy (then this term is not mass term any longer)
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since the field ¢ can be written as
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substituting
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you will soon realize the above is

so the potential is
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in other words the circle is minima of the potential V' of this Lagrangian
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now we take
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substituting £ assuming v = A
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Make this simpler.
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this means ¢} is massive field, but ¢} is no longer massive, but a massless field.

1.1 Consideration of the above

Denote m = o +ir (017 € R), we are going to consider the Lagrangian

L =00 0 —m2pto — A (plp)
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Figure 1: Appearance of spontaneous symmetry breaking

doviding into the real and imaginary parts
Re L = (99")(9¢) — (0* = 72) ¢l — A(¢T)?
ImL = —207¢ ¢

you will find when you look at the real part

o > 7% massive
o2 = 7% . massless
a2 < 7%:. SSB

what the imaginary part means?

1.2 Some examples of the diagram of the Lagrangian

For the Lagrangian
£ =dpt0p —m?oto — A (plp)”
we separete the field into the real and imaginary ¢ = % (p1 +ip2)
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then the term —3¢?¢3 provides the following diagram. Actually
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Figure 2: Diagram

taking the term corresponds to the diagram
A
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and the applying wick theorem

=— %/dwldajgdyldygde (x1) J (x2) J (y1) J (y2)
x D (z1 —w) D (z2 —w) D (w —y1) D (w —y2)
so the amplitude is
1= =2 [awb (o1~ w) D (22— w) D (w—32) D (w — o)

1.3 What will happen if we choose the field shifted differently?

The stable domain is the circle which is
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Privaiously I took the fields as

(@17@2) — (410/1 + %7@5)

however it would be ok as long as they are shifted on the circle, more generaly
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the Lagrangian was
1 1 1
L=5001)" +5092)" + 51 (0] +¢3)
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and shifting as the above, then we have

1 1 4
L =5 (0p1)® + 3 (Dp2)? — 2 u2 cos? 6 — w2p?sin? 0 + Z—)\ +0

This one is the more general shifted Lagrangian, and you can obtain the formar one just putting
6 = 0. This implies the Lagrangian has continuous symmetry.

(1 : massless, @9 : massive

(1 : massive, @9 : massless (1 : massive, o : massless

1 : massless, @9 : massive

Figure 3: massive and massless points

1.4 Case.01
1 2 1 2 Moo M A, 02 A 9 9
L=350p1)" +50p2)" + Tl + T oo — 7 (91 +¢2) + 501
this Lagrangian’s potential
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has the four minimas at
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Figure 4: massive and massless points

Denote u "
@1:¢1+ﬁ,¢2:¢2+ﬁ

then the potential will be
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V(t1,1h2) = ZA%} + 1/\1//21 — VA — VA3 + p2? + pd — %\

so the new Lagrangian is as follows.
,U/4 1 2 1 2 2 2 2

so you can find there is no massless field in this case, but 1,1, are massive. This Lagrangian is
not very interesting because there is no connection between 1, 5.

1.5 Case.02

Now consider the another case whose potential is as following
1, 2 A 2, 2 4
V(p1,92) = Yy (1 +3) + 1 (¥1 + 195 + ¢3)

the potential has minimas at



and shifting
2 2
p1 =1+ p 3 Y2 =1+ p E3
the potential will be
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so the shifted Lagrangian will be
1 1 2 4
L= 5 001" + 5 (902)” = S” (47 + b +3) + 5+ O

the both fields also massive fields.

Figure 5: The figure of the shifted Lagrangian’s potential
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Try to consider why the Lagrangian gets the massless field at the and with SSB.

£ = (05" (90) + 1 (1) — A (le)”

One of the reason is the Lagrangian has spherical symmetry, but the last ones are not. And with
SSB, the Lagrangian shows as the fact.
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Even if the Lagrangian changes from unstable to stable, a massless field does not necessarily
appear. However, a massless field always appears for spherically symmetric Lagrangians.



